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Recently, Williams (1982) carried out a study of the initial development of the viscous 
flow in the vicinity of a sharp trailing edge on a symmetrical body impulsively set 
into motion. The numerical results of that study indicate that, for small or moderate 
trailing-edge angles, a moving singulacity occurs in the solution fairly early in the 
flow development and that the flow in the vicinity of this singularity exhibits the 
characteristics of unsteady separation. I n  the present study, this problem is re- 
examined with the objective of providing convincing evidence for the existence of 
such a singularity and describing its structure. 

A detailed asymptotic theory is developed for the structure of the boundary-layer 
solution in the vicinity of the moving singularity. The major features of this theory 
are then tested by comparison with careful numerical solutions carried as closely as 
possible to the singularity. The agreement between the asymptotic theory and the 
numerical integration of a the boundary-layer equations is favourable, and i t  is 
concluded that the proposed structure of the singularity is correct for unsteady flow 
past a sharp trailing edge that is impulsively set into motion. 

1. Introduction 
When a symmetrical body is impulsively set into motion, at time t = 0, with a 

uniform motion along the plane of symmetry, the inviscid flow over the body develops 
instantaneously, while, in contrast, the flow within the viscous layer adjacent to the 
body develops slowly. The fully developed steady-state viscous flow is reached only 
after some period of time. The development of the viscous layer actually occurs in 
two stages. For small times, the flow develops locally under the influence of local forces 
and acceleration and is largely independent of any upstream influence. At some later 
time, the influence of the body leading edge comes more strongly into play and the 
flow develops under the influence of both local conditions and the conditions far 
upstream (at the leading edge). 

I n  a recent paper, Williams (1982; hereinafter referred to as I) investigated the 
initial development of a viscous flow in the vicinity of the sharp trailing edge on a 
symmetrical body which is impulsively set into motion. For this problem, the 
boundary-layer equations may be reduced to a semisimilar form in terms of the 
parameter m, where the internal angle of the trailing edge Mn is related to m by 

2nm 
M n = -  

1 + m ’  
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Thus m = 0 corresponds to a cusped trailing edge and m = 1 to the rear stagnation 
point on a bluff body. It has been shown by Proudman & Johnson (1962) (see also 
Robins & Howarth 1972) that  if m = 1 a solution exists for all time and a t  large times 
the solution is double-structured with an outer part scaling exponentially with time. 
Williams found that for all chosen values of m in the range 0 < m < 1 the solution 
of the reduced equations terminated owing to the occurrence of a singularity. I n  the 
physical plane this singularity moves up the body from the trailing edge with a finite 
velocity. It was shown that, in a coordinate system moving with the singularity, as 
the flow approaches the singularity the velocity profile approaches one in which the 
shear and velocity vanish simultaneously a t  a point within the boundary layer. These 
results substantiate the Moore-Rott-Sears model for unsteady separation, and the 
physical picture that emerges is one in which the unsteady separation point originates 
a t  the trailing edge and moves forward along the body as time proceeds. For m = 0 
there are objections on physical grounds to the formulation, and the numerical 
integration was arbitrarily terminated before any singularity appeared. 

The above results, together with other recent results, provide convincing numerical 
evidence that unsteady boundary-layer calculations in which there is an adverse 
pressure gradient are terminated by a singularity, and that the features of the flow 
in the vicinity of this singularity are just those associated with the well-known 
Moore-Rott-Sears condition. It appears therefore that there is a strong similarity 
between the two-dimensional steady boundary-layer calculation and two-dimensional 
unsteady boundary-layer calculations for flows leading to  separation : in each case 
the calculation is terminated by a singularity. I n  the steady case, the singularity (the 
'Goldstein singularity ') is well known and well understood. The singularity occurs 
at the wall, and the local component of velocity parallel to the wall, for example, 
varies as the square root of the distance from the separation point. Unfortunately, 
the singularity associated with unsteady separation is not as well understood as the 
Goldstein singularity. 

Several years ago Sychev (1979) (see also Smith 1982) proposed a new kind of 
singularity in boundary-layer theorv for describing a breakdown of the solution 
centred at interior points of the flow field. The conditions for the appearance of this 
singularity are identical with the Moore-RotGSears condition ; namely, that relative 
to axes moving with the singularity the velocity u of the fluid parallel to the wall 
should satisfy 

u = - = o  

y measuring distance from the wall. If the singularity is centred on the wall itself, 
then the most commonly occurring form is that  described by Goldstein, and its 
structure is controlled by a balance between viscous and inertia forces. The Sychev 
singularity is by contrast entirely inviscid in origin, the viscous forces being negligible 
at the centre of the singularity. Although this singularity was described in the context 
of steady flow, i t  may also be relevant to unsteady problems of the semisimilar type 
and even more generally (van Dommelen & Shen 1981). The aim of the present paper 
is to show that the singularity is relevant to the calculation in I. The specific 
comparison is made for m = 0.2 and the relevance is inferred for 0 < m < 1 .  A 
detailed asymptotic theory is developed for the structure of the solution in the 
vicinity of moving singularity. To test this theory, new numerical solutions to  the 
boundary-layer equations are obtained for this problem. These solutions are carried 
as closely as possible to the singularity and are designed to provide detailed 
information for comparison with the theory. The agreement between the asymptotic 
theory and the numerical integration of the boundary-layer equations is favourable. 

au 
aY 
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2. The basic equations 
The unsteady boundary-layer equations are (Rosenhead 1963) : 

au au au au au a2u 
-+u-+v- = e + u e e + - ,  
at ax  ay at ax ay2 

-+- = 0, 
au av 
ax ay 

( 2 . 1 ~ )  

(2.1b) 

where, after suitable scaling, x and y denote distances along and normal to the wall, u 
and v are the corresponding velocity components, t is time, and u,(x, t )  is the given 
external velocity. We denote the origin of the coordinate system by 0 and we take 
0 to be a t  the vertex of the trailing edge. The boundary conditions, associated with 
these equations and corresponding to an impulsive start at t = 0, are 

u = v = o  (y=O,  XGO, t > 0 ) ,  ( 2 . 2 ~ )  

u+u,(x,t) (y+co, x < o ,  t > O ) ,  (2 .2b)  

u = u,(x, 0) (y > 0, x < 0, t = O ) ,  ( 2 . 2 4  

u = u,(O,t) (y > 0, x = 0, t > 0). 

u, = + ( - 2 y  (0 < m < 1, t > O ) ,  
Further, we take 

and simplify the equations by writing 

(2 .2d)  

(2-3)  

where subscripts denote differentiation with respect to either y or 7, and the 
corresponding boundary conditions are 

The underlying assumption here is that, although the boundary layer on the body 
terminates a t  0, there is a sense in which the structure of the boundary layer near 
0 is fixed by local conditions and is independent of previous history. 

As noted in I for any flow that is impulsively set into motion, the viscous layer 
next to the body develops in two phases. In the first of these, the local flow develops 
largely independently of the upstream conditions. That is, i t  takes a finite amount 
of time, from the onset of the motion, for the effect of a sharp leading edge to be felt 
a t  points downstream. During this period the flow develops under the influence of 
local conditions alone. At some later time, after the effect of the leading edge has 
been felt a t  the point in question, the local flow develops under the influence of the 
leading edge as well as the local conditions. The present calculations are related only 
to that initial phase of the motion in which the flow develops under the influence of 
local conditions. 

In  $ 3 ,  a detailed asymptotic theory is developed for the structure of the solution 
of (2 .5)  in the vicinity of the moving singularity. To test this theory, it is desirable 
to have a numerical solution of (2 .5)  in the vicinity of the singularity. Unfortunately, 
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it is not possible to directly solve (2.5) numerically because the solution at 7 = 0 is 
not readily obtainable. To avoid this problem, we introduce the transformation 

7 = (l-e-');N, f(7,7) = (l-e-7)iF(7,7). 

In  terms of F and N ,  (2.5) becomes 

This transformation was made so that the solution to (2.7) remains finite as r+O. 
In fact, at  7 = 0, the solution to (2.7) is a similar solution, and thus the numerical 
solution is easily started. Furthermore, i t  is clear that for large r (near the singularity) 
(2.7) and (2.5) have the same behaviour. A careful and detailed solution of (2.7) was 
obtained to test the results of the asymptotic solution. 

The numerical method employed in solving (2.7) is exactly the same as that 
employed in I. Equation (2.7) is written as a pair of equations: 

aF _-  
aN-  w% 

a Z w  aw aw 
aN2 aN a? -+a,-+a,w+a, = a4-, 

in which 
aF 

a, = - F[$( 1 + m) (1  - e-7) -a( 1 - m) r e-7] + (1 - m) ( 1  - e-7) r -+ + e7N, a7 
a, = m(l-e-r)--, aF a3 =-m(l-e-7), a4 = (1-e-7){1+(1-m)~- 

i3N 

In this system the boundary conditions are 

w(r ,  0) = F(7,O) = 0, lim w(7, N )  = 1. 
N+'X 

The differentials in the N-direction are represented by central differences, while those 
in the 7-direction are represented by backwards differences. At the first station a 
similar solution exists, so that no backwards differences are required. At the second 
station a two-point-backwards difference representation is used for the r-derivatives ; 
at the third and subsequent stations, three-point-backwards differences are used. The 
solution is begun a t  7 = 0 and marched in the direction of increasing 7.  A t  each station 
the set of equations for the values of w(7, N )  at each grid point is a tradiagonal system, 
which is solved by employing the Thomas algorithm. Since the coefficients in the 
tridiagonal system contain the unknown functions F(r, N )  and aF(7, N ) / a N ,  the 
system is solved in an iterative fashion. An initial guess is made for the discrete values 
of w(7, N )  at each grid point at a given 7-station, and this guess is used to calculate 
the coefficients a,, a,, ag and a4. The tridiagonal system is then solved for a new 
approximation to w(r, N ) .  A t  the end of each iteration, new coefficients a,, a2, a3 and 
a4 are calculated employing the current solution for w(7, N ) .  This procedure is 
repeated until the values of w(r,  N )  a t  each grid point for two successive iterations 
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7 

0 
1 
2 
3 
4 
5 
5.2 
5.4 
5.45 
5.50 
5.51 
5.52 
5.53 

aJ 
0.4034 
0.1689 
0.0382 

-0.0617 
-0.1577 
- 0.1796 
-0.2045 
-0.2115 
-0.2190 
-0.2205 
-0.2221 
-0.2238 

6* 
0 

1.6389 
2.2812 
3.0845 
4.1381 
5.848 
6.466 
7.541 
8.056 
9.041 
9.432 

10.068 
12.316 

TABLE 1 

X 

- 
0.3027 
0.1773 
0.1421 
0.0925 
0.0742 
0.0476 
0.0396 
0.0293 
0.0099 

z 

- 
0.1665 
0.1208 
0.1067 
0.0830 
0.0721 
0.0528 
0.0461 
0.0364 
0.0141 

710 

- 

0.339 
1.009 
1.227 
1.599 
1.779 
2.132 
2.276 
2.514 
3.375 

agree to within some small tolerance. This scheme is similar to that proposed by 
Blottner (1972). The grid spacing in the N-direction was 0.1, while that in the 
7-direction was initially 0.02 but was gradually decreased to 0.005,O.OOl and finally 
to 0.0005 as the singularity is approached. This decrease in the 7-step size was chosen 
to provide high resolution of the solution in the vicinity of the singularity. 

The solutions indicate that af/a7 = aF/aN is positive for all q ( N )  for small 7. At 
some value of 7 the velocity profile w(7, N) begins to show reversed flow near 7 ( N )  = 0 
while still remaining positive for large r ( N ) .  With a further increase in the region 
of reversed flow increases rapidly and the solution terminates in the vicinity of 7 = 7,, 

where 
aF 
aN 

1+7(1 -m) -=0;  

i.e. when the coefficient of a2F/8Ni37 in (2 .7)  (or i3zf/av a7 in (2 .5) )  changes sign. The 
physical interpretation of this result is that, for 7 > 7,, disturbances may propagate 
in the direction of decreasing 7. For the particular case of m = 0.2, the reverse flow 
starts at  7 x 3.363 and 7, = 5.5312. Some of the principal properties of the numerical 
solution are displayed in table 1 ,  where we have defined 

Cf(7) = f,,(O, 7 1 7  ( 2 . 9 a )  

S* (7 )  = lim (7-f), 
q-t- 

and 7J7) is the value of q where f q  achieves its minimum value. 

(2.9b) 

( 2 . 9 ~ )  

(2 .10)  

3. Asymptotic theory 
The principal features of the structure of the solution of (2 .5)  as 7+7, are as follows. 

First there is a reversed-flow region near 7 = 0 and the skin friction at the wall appears 
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to  be smooth. Thus the derivative of C, is approximately -0.1 a t  T = 3 and has only 
reached approximately -0.15 a t  T = 5.51. Secondly, X ,  evaluated a t  the minimum 
value of f 7 ,  is decreasing precipitously towards zero as T + T ,  and Z is behaving in 
a similar fashion. Thirdly, the displacement thickness S* is increasing quite rapidly 
and has reached an unusually large value at T = 5.53 for a smooth solution of the 
boundary-layer equations. 

Sychev's conjecture about the nature of the singularity, which we wish to generalize 
and to test against this numerical data, follows from the assumptions 

(i) qo+m as T+T,,  

where 

( 3 . 1 ~ )  

(3.1 b) 

and A ,  p are constants. The generalization that we shall also consider here is 

zAA~-" as q+m, ( 3 . 1 ~ )  

where a > 0 is a constant. 
I n  physical terms, the proposal is that, as r+r,, the forward-moving fluid in the 

boundary layer is pushed out to an infinite distance from the wall. In  figure 1 we 
display profiles of f 7  in the range 0 < q < 6, which shows this tendency, but we agree 
that,  if correct, the mechanism is weak except when T,-T is very small. 

It is convenient to divide the structure of the boundary layer near T = 0 ,  where 

1 
(iii) F 3 r )  + ( - m )  7s 

T = T,-T, (3 .2)  

into three parts, each corresponding to a different range of values of q. The first, 
adjacent to the wall q = 0 ,  is defined by the requirement that q be finite, and here 
we set 

(3 .3)  

i.e. we assume that f may be expanded in a power series in T whose coefficients are 
functions of q. The validity of this hypothesis is verified by the numerical results 
presented in figure 1 .  The leading term Fs(q) is arbitrary except that  the usual 
conditions a t  7 = 0 and the conjectures ( 3 . 1 )  must hold. On substituting (3 .3)  into 
(2 .5) .  we find immediately that 

1 F " ~ + m ( F ~ 2 - l ) - ~ ( m + 1 ) F , F , "  
F,(q) = - [ 1 + rS( 1 - m )  F 3  dq. (3.4) 

The boundary conditions on Fl a t  q = 0 are automatically satisfied in view of the 
properties of F,. We insist that F ( 0 )  = 0 because i t  has not proved possible to smooth 
out a discontinuity of F; a t  q = 0 by means of a sub-boundary layer. The expansion 
(3 .3)  is well ordered except as q+ 00 by virtue of (3 .1) .  For then we see that 

(3 .5b)  

if (iii) holds. We shall pursue the consequences of (3 .5a)  here and defer the discussion 
of conjecture (iii) to the appendix. 
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0 D 
a.0 0 

- 

0 
0 0 

A 
0 

0 0 
do 

0 O 0  0 0 

0 a b 
A 

0 

0 
0 

- 0 

a 0 0  A + 

t 

I I 1 I 1 1 1 

o 

0 

0 

0 0  

It follows from (3.5a) that the first two terms of the series (3.3) are in balance when 

1 
e2h x T-l; i.e. q x - log T-l, (3.6) 

2P 

and this suggests that we match the above solution to that in a second layer above 
it defined by 

q = qs(T)+C, with qs - - - logTD2 as T+O, (3.7) 
2P 

where 6 = O(1)  and D is a constant to be specified below. Thus qs has a logarithmic 
singularity in T as T+O, in agreement with (3.6), and later on we will identify qs 
with qo. When 6 x 1, X = O ( @ ) ,  and this suggests that we write 

where fo is a constant. Then g satisfies 

~s(1--m)[gg-g89~~l-m[l-{7s(1--m)}-21 

The natural expansion ofg is in powers of @, and so we write 

g = go+@g,+ ... . 

(3.9) 

(3.10) 
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g;2-gogo" = h2, 

2m[7:( 1 - m)' - 11 = 
[7,(1- m)i3 

(3.11) 

(3.12) 

and h is real. The solutions of (3.1 1 )  are either trigonometrical or hyperbolic functions, 
of which only the second kind can match with (3.3). Hence 

go = hp-l sinh P.$, (3.13) 

and the matching now follows. It is noted that, if the imposed pressure gradient is 
favourable, A2 < 0 and the appropriate solution of (3.11) is P-'( -h2)a cosh P.$, which 
corresponds to a point of inflexion of the profile and to X changing sign as E passes 
through zero (Elliot, Cowley k Smith 1983). We shall refer to this in the appendix. 
The principal property of 7, is confirmed, and on continuing the expansion we find 
that 

1 3-m +$ [3+e2Pc]+- 1 4 / ? ~ : ( 1 - m ) ~  

+A, cosh + B1(3 + cosh 2PE), (3.14) 

where A ,  and B, are arbitrary constants. As t+-- co, i t  follows that 

If we replace .$ by 7, using (3.7), and set D = h/2A 

It is not possible to match the terms depending on A ,  in (3.16) to the solution in 
7 = 0(1), and so A,  = 0. The other terms either match with (3.3) or in the case of 
-PB,e-2flT is allowable in the properties of F,. 

(3.17) 

where C is a constant, and this form suggests that in the outer region we write 

(3.18) 
1 1 

Y =  g--logT-'=~+-logDT. 
2P P 

Then when Y is large and negative 

and in turn this suggests that when Y = 0 ( 1 )  

(3.19) 

(3.20) 
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0.2 

0 
A 

0 
- 

a 
0 

I 1 I a 

0 

a 
0 
0 
0 

where f is independent of T. As Y + - 00 

and it seems reasonable to expect that 
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(3.21) 

(3.22) 

to be compatible with the boundary conditions of (2.6). This conclusion is tested in 
figure 2, where plots of f7 against Y are drawn for various values of T, the value of 
p being chosen, in anticipation of (4.6), to be 1.23. The collapse of the curves as T+O 
is encouraging. It should be noted that the expansion (3.10) is not entirely 
straightforward since the ordinary differential equations that determine g n  have 
regular singularities when go = 0. 

4. Comparisons 
I n  this section we shall compare the asymptotic theory of the singularity a t  T = 0 

in detail with significant properties of the numerical solution. The first comparison 
is made for X ( 2 . 9 ~ ) .  So long as only the first two terms of (3.10) are taken into 
account, this quantity may be computed at [ = where gore = 0, and is 

l + m  >I+ .... 
- m )  

2 l4  
3 ~ ~ (  1 - m) 

A check on the theory is therefore provided by tabulating X2 as a function of r ,  which 
is done in table 2. I n  addition, X2, obtained from the numerical calculation, is plotted 
as a function of 7, for the region very near the singularity, in figure 3. The linear 
behaviour of X2 as X - t O  is largely confirmed, and we estimate that rs = 5.5312 so 
that A = 0.2929. 
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5 -  

4-  

3 -  

7 

4 
5 
5.2 
5.4 
5.45 
5.50 
5.51 
5.52 
5.53 

104x2 

916 
314 
202.0 
85.59 
55.03 
22.62 
15.72 
8.57 
0.98 

A* A0 

4.564 0.512 
6.216 0.752 
5.361 0.778 
5.510 0.773 
5.545 0.758 
5.514 0.723 
5.578 0.709 
5.576 0.688 
5.591 0.641 

TABLE 2 

Z l X P  
0.364 
0.450 
0.496 
0.593 
0.642 
0.733 
0.769 
0.821 
0.942 

T* 
2.477 
0.650 
0.381 
0.140 
0.0849 
0.0318 
0.0215 
0.0113 
0.0012 

104x2 61 

2: 1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

O' 5/52 5.k22 5.k24 5.k26 5.k28 5.k30 5.k32 
0 

7 

FIGURE 3. Variation of X with 7 near T = 0. 

Next we examine the behaviour of 

a* = J ( 1  - f,) dq = lim (q -f). 
0 7*m 

If 7 = Y + 2vS and Y = O( 1 ), T Q 1,  the asymptotic theory suggests that 

2qs +f( Y)+O(l ) ,  
= 7,(1 - m )  

wherefy --f 1 as Y + CO. Hence 

(4.2) 

(4.3) 

(4.4) 
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A* 
00 0 0 0 0  0 0 0 0 0 0 

5.01 I I 

0 0.05 0.1 

T 
FIGURE 4. Variation of A* with T near T = 0. 

as T+O. We tabulate 
A* = S*+logT (4.5) 

in table 2 and plot this quantity as a function of T, near the singularity, in figure 
4. It is seen that A* is almost constant as T+O, suggesting that 

P z 1.23, (4.6) 

although errors of about 5 yo can be expected in view of the behaviour of log T when 
T 4 1. We note that A*(T) deviates from a constant value slightly at T = 0.0012 and 
sharply at T = 0.0007. This deviation appears to be the direct result of the limitation 
of the calculations to a finite region in the ?-direction. As the singularity is 
approached and the thickness of the boundary layer grows rapidly, the limited 
computational region inhibits the natural asymptotic behaviour in the outer regions 
of the boundary layer. As a result, the physical characteristics of the boundary layer 
which depend to a large extent on the behaviour of the outer reaches of the boundary 
layer (e.g. S*) are somewhat in error very near the singularity. 

We may now test the asymptotic prediction of T~ by tabulating 

and this is also displayed in table 2, and, for small T, in figure 5. It is seen that A ,  
is not quite constant near T = 0, but the variation is perhaps acceptable in view of 
the relative smallness of q0. The behaviour of 2 (2.9) near T = 0 may also be found 
from (3.10), and we have 

and so 

- = 1-2.9@+ ... 
X P  
2 

(4.9) 

when T 4 1, taking 7, = 5.5312 and P = 1.23. The function Z / X P 2 ,  calculated from 
the numerical results, is tabulated in table 2 and we see that it is moderately 
consistent with (4.9), but the differences are significant. For example, when 
T = 0.0012, the predicted value is 0.900, whereas the computed value is 0.942. 

I FLM 131 



188 J .  C. Williams and K .  Stewartson 

I 

! 1 .o 

I I I 

0 0.1 0.05 0.1 

T 

FIGURE 5. Variation of A ,  with T near T = 0. 

However, it only needs a small change in /3 to effect a considerable improvement. If 
/3 = 1.25, which is within the allowable range of ~3 already mentioned, this computed 
value changes to 0.913. For such a value of /3, A* has a greater variation with T near 
T = 0 than if /3 = 1.23, but i t  is almost linear and might be accounted for by including 
higher powers of T in the expansion of g(B, T). Also the corresponding changes in 
A ,  are insignificant. Be that as it may, i t  should also be borne in mind that the 
numerical values of the coefficients in (4.8) suggest that  this asymptotic formula for 
Z has a small domain of validity. A more useful comparison can be carried out with 
X. We retain the value 1.23 for ,!?, and then (4.1) implies that  

X = 0.2929@-0.187T+ O(T4) (4.10) 

and we test its validity by considering the inverse function 

T* = 11.66X2+50.8X3, 

which should be equal to T + O ( P ) .  A set of values of T* is given in table 2 and we 
see that this prediction is confirmed to  three significant figures. 

Finally, an additional visual check is provided in figure 6 by plotting 

as a function of 7-7, for various values of T as well as the limit solution gh(5). The 
collapse of the,data on to the limit curve is satisfactory. 

In  conclusion, we claim that the agreement between the asymptotic expansion and 
the numerical integration of the equation is favourable and that Sychev’s conjecture 
about the structure of the singularity is correct for unsteady flow past a trailing edge 
for m = 0.2. The analytic argument holds for all m in 0 < m < 1,  and the existence 
of a singularity is strongly indicated by the numerical calculation in I for other values 
of m in this range. We infer therefore that for all such m, i.e. trailing edges with 
internal angles that are either acute or obtuse, the solution of the equation (2.5) 
terminates in a singularity with the Sychev structure. 
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0 

A 
0 

0 

I I I I I I 
-2 -1 0 1 2 3 

€ 

FIQURE 6. Variation of Cf+1/7(1-m)}T-: with coordinate 6 :  0, 7 = 5.45; 0, 5.50; 0, 5.52; A, 
5.53; 0 ,  5.5305; -, first term of the series (from (3.13)). 

5. Discussion 
Semisimilar flows are the simplest class of unsteady boundary layers to which the 

MRS condition for a singularity might apply. In  this class, the dependence of the 
solution on x, t may be reduced to a single variable T as in (2.4), and the governing 
equation takes the form 

(5.1) 

where 8,, d 2 ,  8, are functions o f f ,  f,, f 7 ,  7, r only. The singularity occurs when 
8, = f,,? = 0. Let this point be designated r = T,, 7 = 7,. 

Most commonly 8, 2 0 for r < r,, and, when r > r,, there is a range of values for 
7 for which 8, < 0. If qs = 0, the singularity is probably of the Goldstein (1948) type, 
viscosity playing a significant role in its structure, but an exception has recently been 
found, in a more complicated situation, by Simpson & Stewartson (1982). If 8, = 0, 
the solution may be characterized by an essential singularity, so that it remains 
smooth in all its derivatives as T increases through 7,. An example is provided by 
the impulsive motion of a flat plate (Stewartson 1951, 1973) and in this solution 
q s =  0. 

The structure proposed by Sychev and generalized in the appendix is also relevant 
to flows for which 8, 2 0 for r < T, and at the singularity l;ls = 00 and 8, > 0 ;  i.e. 
the pressure gradient is adverse. Of the possible forms of the singularity, Sychev’s 
is the weakest, with only a logarithmic singularity in the displacement thickness, and 
seems to be the most likely to occur. Previously, computations exhibiting an 
apparently singular form when 8, first changes sign have been carried out by Telionis 
& Werle (1973) for the steady boundary layer on a downstream moving wall and by 
Williams & Johnson (1974) for an external velocity 

f,?p) - u,, - &f,, = 832 

Ax 
u, = 1-- 

1-Bt’ 
1-2 
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where A ,  B are positive constants. The impression left by these studies and by 
Telionis' (1982) general review of unsteady boundary layers is that in both cases 7, 
is finite. The present investigation does, however, suggest strongly that 7, might be 
infinite, and it would be of interest to re-examine these solutions with the object of 
testing this conjecture and indeed of elucidating the structure of the singularity. 

The only example known to us of a solution to which 7, is certainly finite is in the 
problem of an impulsively heated flat plate in air at rest (Ingham 1978; Brown & 
Riley 1973). Here the velocity and temperature fields are governed by a pair of 
equations each similar to (5.1), and to date the numerical properties of the solution 
near 7 = 7, have defied analysis. 

A singularity in the solution of (5.1) may be possible even when 8, changes sign 
from the outset (7 = 0) of the calculation. A likely example is the steady boundary 
layer near an upstream-moving wall (Tsahalis 1977). In  this instance, however, there 
is no clear indication that fT7 and 6, vanish together in the singularity profile; indeed, 
Inoue's (1981) studies of the same problem, but at finite Reynolds number, suggest 
that this is not the case. From the rapid increase of 6* as 7 increases in Tsahalis' 
calculations, we may reasonably conjecture that  6* + co as 7 +7,. If we grant further 
that 7, = 00, the generalized Sychev theory, described in the appendix, may be 
relevant. In  that event 8, and fTT remain small for a large range of values of 7 when 
7, -7  is small, but do not vanish together, and it is not even necessary that fT7 vanish 
in this range. There is a sense in which the limit form of fTT has two zeros, one on 
either side of 19, = 0 and, in terms of 7, a large distance apart. This structure is different 
from that envisaged in the MRS singularity. It should be noted that the validity of 
the generalized-Sychev structure has not been completely established, and an 
alternative has been proposed by van Dommelen & Shen (1983) in which the MRS 
criterion does hold and S* appears to remain finite M r+7,. Moreover, since 
disturbances can travel upstream when O1 < 0, Tsahalis, in his computation, had to 
approach the steady-state solution via an unsteady boundary layer. He found that 
a limit solution is being approached as t increases, but could not exclude the 
possibility that in fact a singularity is developing in the unsteady equation at a large, 
but finite, time. In  that event, a third structure, proposed by van Dommelen (1981) 
for general unsteady boundary layers, might be more relevant to his problem. 

The authors are grateful to Dr S. N. Brown and Dr S. J. Cowley for useful 
discussions while the work described here was in progress and to Dr L. L. van 
Dommelen, who made penetrative criticisms of the paper when in manuscript form. 

Appendix. Generalized Sychev singularity 

finite 
With the assumptions (i) and (iii) of $3, we see that when T 6 1 and 7 is large but 

(A 1 )  
mT (7,( 1 -m) )2  - 1 a+ 1 

- ( I  -m)7,  A [7,(i -m)13 2a+ 1 
q"+ ... . 1 

+A7/-"+- 

The last two terms of (A 1)  are in balance when T - q-2n, and this suggests that we 
introduce a new variable 

so that < + O  corresponds to 9 + 00. We also write 

5 = y p 2 "  (A 2) 
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when 5 - 1,  where q1 is a constant, and in order to match with (A 1 )  

e - 3-7 m ( a + l )  [ ~ ~ ( l - m ) ] ~ - l  
ay ”-;-“+  pa+ 1) {TS( 1 -m)>3 

as 5-0. When (A 3) is substituted into the governing equation (2.5) we obtain 

which suggests that the error in (A 3) is O(T(2a-1)/2a). The solution of this equation 
satisfying (A 4) is 

g’2 = A2 + B( -g)2al(a-1) 

where B = A-2/(a-1)(a- l)za/(a-l), provided that g < 0. 

(A 6) 

In  general, it  comes to an end therefore when g = 0, and, if 5 is then equal to yo, 

and so the neglect of fVllll in (A 5 )  is no longer justified. It may be shown that this term 
is important in a region near 5 = Q of width fl, and accordingly we write 

q = yo T-1/2a + x f l ,  (A 9) 

where H is a function of x to be found and 

5a+ 1 
p=qzij40. 

For (A 10) to be a solution of (2.5) 

s”+!gs(l -m)A[H’(2p++)-$x_XH”] = 0, (A 12) 

(A 13) 

and to match with (A 8) 

H -+BA(a+1)/(a-U ( - x p - l M a - 1 )  as x +.- 00.  

A solution of (A 12) that satisfies (A 13) can always be found, but in general it  
becomes exponentially large as 2- 00 and must be rejected. The only exceptions are 
when n 

n - 2 ’  
4 p + 1 = 3 ,  a=- 

where n 2 2 is an integer. This condition fixes the allowed values of a and (A 6) now 
reduces to 

(A 15) g‘2 = A2+B(-g)n.  

The simplest case n = 2 corresponds to Sychev’s solution; if we wish f,, to have a 
minimum then n must be even. Let us fix attention on this possibility now so that 
we are considering alternatives to the description of $3, and n = 2p, where p is an 
integer. Then g passes smoothly from negative to positive values a t  5 = Q, where 

y - - (n -~ ) (+ )  2 2 / n - 1  (;) 1 !( -;-?> 1 1  !, 
O - nf 
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and subsequently g' increases from the value A. This solution comes to an end at 
c = 2c0, when both g and g' become infinite. In  particular, 

g' N pA(2"/2'P-'' (2y0- C)-Pl(P-') (A 17) 

(A 18) 

as c+2co - . We may now revert back to the original variable q ,  apart from an origin 
shift, writing 7 = 2c0T-1/2a+0, 
and then 

where 0 is large and negative. In a similar way 

is also a function of 8 only when 8 is large and negative and T+O. Thus when I3 is 
O(l ) ,  fT is a function of 0 only, which approaches the limit + 1 as I3+ co. The outer 
part of the boundary layer when the skin friction is positive is pushed away from 
the wall but otherwise remains finite in extent. The displacement thickness S* satisfies 

If n is odd, the structure proposed in this appendix has a possible application to 
singularities associated with the vanishing of 1 +(1-m)7f7 even though f 7  is 
monotonic (decreasing). Generally this term might vanish a t  a finite value q2 of q, 
and as the singularity is approached i t  is necessary that ~ , + c o .  In  addition (A 1) 
must hold when T 4 1 and q is large but finite. 

Then formally a parallel match may be made, for the leading terms in the expansion 
about T = 0, to that when n is even. The solution, for 6 finite, automatically matches 
with (A 1)  as c + O ,  and, as 6 increases, g is initially negative while g' > 0. At 6 = C0, 
g' = h and g vanishes. At 6 = cl, where 

g reaches a maximum value of g1 = (A2/B)-1/n. Thereafter, g' becomes negative and 
both g and g'+- co as 6+2cl. Thus the limit profile when c is finite is monotonic 
but i t  has two points of inflexion on either side of g' = 0. In  terms of q ,  these points 
are all large distances apart. I n  the neighbourhood of 2c1, we may revert to the 
original variable q, again apart from an origin shift, and write 

q = 2[1TT-1/2a+#. 
Then 

when $ is large and negative, confirming that x changes sign when T is small. Should 
the outer part of the boundary layer be O(1) in thickness, then the overall 
displacement thickness S* also satisfies (A 20) with go replaced by Cl. The weakest 
singularity in 6* occurs when n = 3, and then 

6* K (7, - 7)-4 (A 24) 
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as r+r,. If 5 is finite, the determination of further terms in the expansion off in 
powers of T (cf. 3.10) requires the solution of a sequence of linear ordinary differential 
equations with or without forcing terms and having g as coefficient of the highest 
derivative. It is possible that non-analytic solutions may be generated at any zero 
of g ,  of which there is one when n is even and two when n is odd. Further study is 
required to determine the consequences for the structure proposed here. It may even 
be that a contradiction is eventually reached, nullifying the postulate of structure, 
but this seems unlikely, for n = 2 a t  least, in view of the good agreement with the 
numerical studies. We also note that in the theory of singularities of unsteady 
boundary layers on rotating disks (Stewartson, Simpson & Bodonyi 1982) the 
situation for the higher terms in the expansion is somewhat similar to that here for 
n odd. 
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